A SURVEY OF AUTOMATIC CODING TECHNIGUES
FOR DIGITAL COMPUTERS
by
JOHN L. JONES

B.A., Luther College
(1950)

SUBMITTED IN PARTIAL FULFILIME'T OF THE
REQUIREMENTS FOR THE DEGREE OF
. MASTER OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOIOGY
May, 1954

Signature of Author
Department of Electrical Engineering, May 24, 1054

Certified by

Thesis Supervisor

Accepted by
Chairman, Departmental Committee on Graduate Students

A SURVEY OF AUTOMATIC CODING TECHNIQUES
/
FOR DIGITAL COMPUTERS

by
JOHN L. JONES

Submitted to the Department of Electrical Engineering
on May 24, 1954 in partial fulfillment of the require-
ments for the degree of Master of Sciences

ABSTRACT

Automatic coding techniques are attempts to reduce the amount
of time and work necessary to prepare a particular problem for solution
on a digital computer. This is accomplished by shifting as much as
possible of the necessary clerical work onto the machine itself. Al-
though a humen must do the original analysis of the problem, a machine
can be made to do the rest of the job.

There are two basic methods of approach, that of 1) compiling
and 2) interpreting. There are in addition several other approaches
which are not so generally applicable, the most prominent of these
being the process of conversion. This technique is used mainly by
binary machines. :

. The prinecipal factor in determining the method chosen by a:
particular group for a particular machine is the storage characteristics
of the machine. However,,quite a‘number'Of_other factors have an ef-
fect here, alsoe R . ' : ’

Interest in these techniques is widespread. This interest
appears to have increased the general desire for exchange of inform-
ation. With such exchange, pressure rounts for a standardization
of terminology. Concrete progress is being made in this direction
as well as in the refinement of automatic coding techniques.

Thesis Supervisor: Charles W. Adams
Title; Assistant Professor of Electrical Engineering

ii

ACENQ T

The writer i1s deeply indebted to Professor Charles W. Adams
for the encouragement and guidance continually received, not only
during the course of this work, but for the past two years at MIT,
For this he can only offer a very sincere "thank you'".

A vote of appreciation must also be given to all those
people who were contacted either by letter or in person, and without
whose interest and help this paper would have manifestly been im=-
possible to prepare. Thanks also to Miss Claire Fleming who typed
the final copy.

_ Last, but by no means least, a thank you to my wife, Nancy,.
whose typing of eighty-odd letters, various reports and rough drafts
was no small part of the’job. _

1ii

TABLE OF CONTENTS

Page

Title PagE sececevrcescersscccscenssnsscrssstsonessessssrsossssscnses 1
AbStract ceeeceecececoscvocerreosocessosccscososensssscnssesnses 11
Acknowledgement .eeoeseevcccsscccssconcescescsgsscossssccsnsenss 11
Table of Contents scecececersoscssccecccescsvassssssscsscossssnes 1V
CHAPTER I. INTRODUCTION ¢veeeerevaceenssscncncnnsaonasasnsnns 1
CHAPTER II. THE BASIC FORMS OF AUTOMATIC CODING cecececccveves 7
2.1 Definitiohs - |
2.2 The :Compiler -
"5.3'-‘ The Interpréter'
CHAPTER III. A SURVEY OF PRESENT TECHNIQUES(............. 13
3.1 Other Approaches
3.2 Factors Involved in Choosing a Technique
3.3 "Post Mortem" Techniquss

CHAPTER IV. A SURVEY OF CONTEMPLATED TECHNIQUES WITH
»CO}mSocooo.nooocoopboboyoooooo‘o-oclooooooooooo 19

4.1 Terminology

Lo Uni?ersal Codes

4e3 Multi-Machine Installetions
44 The Analytical Differentiation.
45 The Forms of Pseﬁdb-Codes

4+6 Two Interesting Trends in the Computer Field

iv.

APFENDICES
~ Page

APPENDIX A. ADDITIONAL APFLICATIONS OF THE INTERFRETIVE
mHOD..'....."Q.'......0..0...'...........‘.... 28

APPENDIX B. COMPUTER GROUPS INTERESTED IN AUTOMATIC CODING ... 33

CHAPTER 1
INTRODUCTION

The verb "code" appears at first thought to be a:relatively
insignificant 1little word. Indeed, a person not at all familiar with
the realm of computing machinery would probably be inclined to feel
that the use of "code" as a verb is of infrequent occurence. However,
to the person who has had the occasion to use a digital computer of
any description, the verb "code" will call to mind occasions of human
mistakes and subsequent lost time.

In the text at hand, a distincétion betwéeen the verbs .
"program" and "code" will always be made. Programming a problem will
indicate the process of initially teking the raw problem and analyzing
it into its basic logical blocks or sections. Generally each such
secfion is some sort of computation followed by a "yes-no" decision
as to which future path of operation to follow. This procedure is
often called "flow-charting"-in which, a diagram is prepared indiéating
the flow or sequence of operations and decisions which must be made
for the solution of a particular problem.

The process of coding for a digital computer is the process
of explicitly expressing, in minute &etail, every operation which
must be performed for the solution of a particular problem. This ,
coding must be in a symbology which is of meaning to the ﬁachine in-
question, and in general a symbol is needed for each operation., Such
operations or instructions most usually consist of one arithmetic
operation such as adding, subtracting, etc., or one logical operation
. such as a transferral of information from one location to another, or
~one jump,.based on a yes-no :deé¢ision, from one set of opérations to-an-
 other. The difficulty that begins to appear is one of trying to write
down every arithmetical and logical operation in the solution of a
particular problem. Every contingency must be prepared for and in
general not one instruction of any sort may be forgotten if the correct
answer is to result. Further complicating matters is the fact that
the human mind does many of these simple operations automatically.

-2

This fact "helps" one forget essential instructions.

Even in the light of the foregoing discussion, forgotten
steps are generally not the most common mistakes. The machine also
has to be told exactly where the data it is working with may be found
and where the instructions are located. For this purpose, the machine
has a storage unit with numbered addresses. Upon being told only the
number of the address desired, the machine can go and obtain the ine
formation. The mistakes arise here in the human's either remembering
incorrectly where a piece of information is stored or else thinking
of 36 and writing 63 or some such. Since most machines do not dis-
tinguish between numbers and instructions, this may result in a piece
of data getting into the control circuits or operating on an instruc-
tion as a number. When this happens, almost anything may result.

Often the machine goes into a "loop" - that is repeats an unending
cycle of instructions over and over until stopped manually.

All of this would be bad enough in itself = but in addition,

a particular routine may need to be recopied for reasons of legibility
or sequencing of operations. Or perheps the coder remembers, or finds
in checking, a forgotten instruction. That instruction must then be
inserted and all subsequent addresses modified accordingly. If any
instruction, after the insertion is operated on by another instruetion,
the address in the opérating instruction must be modified to correspond
to the location change of the instruction to be operated on. This
means more forgotten changes.

In the end, the finished code is often checked instruction by
instruction by another coder to detect any obvious mistgkes.'~Unfortunately
another coder may check a couple of bages, finding no mistake;w&ndfthen
begin to feel "Well, this guy's pretty good, I'll just,hufry along = "
and about this time the checker misses a"mistaké,;andvsofit‘goeg.‘

The reason these mistakes in codés are 80 disgusfing, (other
than the damage caused to the coder's ego) is the fact that the machine
will find these clerical mistakes and operate incorrectly or not at
all. Since time on most large scale machines is valued at several

3=

hundred dollars per hour, the people who pay the bills are loath to
have a coder hold up production to find (using the machine) such a
mistake, and, being under pressure; the coder may very well misé the
mistake again and again, ' -

The problem should now be clear - how to Wspeed-?»up" the pro=
‘cess of coding a particular problem by eliminating as many sources
of mistakes as possible. The ideal situation would be to get rid of
the coding altogether. This is also desirable from the point of view
that coding is dowhright boring and laborious work, once the first
flush of "glamour" wears off. This latter fact results from coding
‘being, basically, a clerical type of job. It is a matter of re-
membering a group of addresses and instructions and putting them
correctly in the right place.

Fortunately, we have the best clerk in the world available,
a digital computer. Not only does this clerk work hundreds of times
faster and mskes no complaints to a twenty-four hour a day, seven
day week, but it seldom malfunctions in doing so (provided we have
given the proper instructions to the machine in the first placel).
' In other words, we want to automatize the coding procedure
to the point where the machine can do most of the coding itself.
These methods are popularly called automatic coding techniques,

Perhaps the reader has noticed the careful avoidance of the
word "error". In the interest of promoting a standardization of term-
inology, the following statement1 is offered:

"Numerical analysis has errorsj programs,

coding, data transcription, and operating
have mistakes; a computer has malfunctions."

There is another pressing cause for automatizing methods of
problem preparation, This is the so-called "one-shot"'type of operation,

l. A Programmer's Glossary, Dr. Grace M. Hopper, 1 May 1954

-l

- By this we mean problems that are done only once. We must consider
two phases of the problem: 1) the one-shot use and 2) the one=shot
user. The one-shot use apparently occurs most frequently in engineering
and scientific applications. The preparation and debugging of a
routine which will solve the problem may take days, weeks, or even
months, and then the problem is run on the machine in a matter of
hours and the whole routine is junked when the answers are once ob-
tained. Unless some method of hurrying up the acquisition of the
final checked routine is evolved either a large staff of professional
programmers and coders is needed or production will suffer. Since
the machine is accurate as well as fast the solution is apparent -
automatize the method and let the machine do the rest.

Consider next the one-shot user. Not only does he generally
have a one-shot problem but rarely does he have more than a passing
acquaintance with the methods of problem preparation for a digital
computer. In general he ghould prefer to prepare his own problem |
because: ' |

1) he doesn't want to spend a lot of time explaining
to someone all the facets of a problem, some phases
of which he may have a "feel" for that would be
hard if not impossible to_convey._

2) he knows no one else has as much interest in his
problem as he does.

3) he doesn't want to wait an indefinite but often
lengthy‘time“for a programmer to become available.

4) he wants to spend as little money as possible,

Here we have a paradox - on one hand a man who knows little
if anything about computers and on the other that same man with a
problem he desires to solve using a computer. The solution? Of
course. Automatize the method so it is simple for the man to learn
and let the machine do the rest.

What tasks can be relegated to the machine? Certainly not
the initial operation of analyzing the problem and resolving it inte

-5

1ts logical parts. This réquires'the power of reason which is (at
the moment at least) the human's exclusive possession. Here we are
fortunate - for the ability and training required to do such an
analysis and chart the flow of possible events is no birthright of the
programmer. It is en essential requirement in the executive, scientist
and engineer alike. Once the problem is analyzed, which must be done
in any case or we do not know what the problem is, the machine can
do the rest of the entire job.~ that is, if a pseudo-code can be
provided so that each of the basic, logical steps of any problem can
be. expressed in one, two or a few lines of coding. This pseudo-code
should resemble as closely as possible the everyday working symbology
of the individual with the problem. This latter aspect will be dis-
cussed more extensively in the final chapter.

- Historically, the idea of mechanizing the process of problem
preparation is not recent. Charles Babbage was on the track of a

"library of subroutines" although he did not call it that. He statessz

"There are therefore two sets of cards, the first to
direct the nature of the operations to be performed -
these are called operation cards: the other to direct
the particular variables on which those cards are re-
quired to operate - these latter are called variable
cards..... Under this arrangement, when any formula

is required to be computed, a set of operation cards
must be strung together, which contain the series of
operations in the order in which they occur..... Every
set of cards made for any formula will at any future
time recalculate that formula with whatever constants
may be required. Thus the Analytical Engine will
possess a library of its own."

For the purpose of this paper, a library of subroutines will
be defined as any set of routines or subroutines which are designed
to perform a defined function or operation. These libraries as used

2. Babbage's Calculating Engines, Henry P. Babbage, E. and F.N. Spon,
Longon, 1889, . Chapﬁer VIII, pages 159,,160 -, .

-

today may contain a great number of different routines. The content
of the library varies conéiderably from installation to instsllation
depending upon the particular types of problems met and the mode in
which the library is used.

At this point apolégies must be made to any readers who are
not at all familiar with the principles and terminology of computers.
Up to this point an effort was made to define the problems and their
motivations in terms that could be understood by non-computer pecple.
However, from this point on, it will be assumed that the reader has
at least a speaking acquaintance with the computer field.

-7-

CHAPTER II
THE BASIC FORMS OF AUTOMATIC CODING

2.1 Definitions

In this chapter, two rather straightforward examples are
given illustrating the two basic methods of automatic coding commonly
employed. By "straightforward" it is meant to be implied that the
examples will demonstrate the definition of the method as closely as
possible. The fact that most techniques either contemplated or in
use are combinations of varying amounts of the two basic concepts
do not make the selection of examples a simple choice.

An example of a system using only a library of subroutines
(with or without automatic address modification) will not be given
since the method is covered rather completely in "The Preparation of
Programs for Electronic Digital Computers" by Wilkes, Wheeler & Gill.
However, it should be noted that such libraries are the basic building
block of thesé two automatic coding schemes.

The generally accepted names for the two methods are
1) compiler and 2) interpreter. The rather loose usage of these tﬁo
terms causes considerable confusion. Many groups call their method
elther a compiler or an interpretive_technique when in actuality they
use some combination of the two. Therefore, we define the terms as

follows:l

Compile (verb) - The process of producing from
pseudo-code a specific routine for a particular
problem by:

1) decoding elements of information expressed
in pseudo-code and segmenting the problem;

2) selecting or generating the required sub-
routines;

- 3) transforming the subroutines into specific
coding and entering them as elements in
the problem routine;

4) maintaining a record of the subroutines
used and their position in the problem
routine. :

Compilation decodes the pseudo-code and processes
static and dynamic subroutines and generators to

1. A Programmer's Glossary, Dr. Grace M. Hopper, 1 May 1954

-8-
produce a specific routine for a problem before

computation.

Interpret (verb) - To produce the desired solution
of a particular problem by:
1) decoding an element of information ex~
pressed in pseudo=-code;
2) selecting the required subroutine;
3) carrying out the required operation by
means of the subroutines
4) continuing to the next element of in-
formation.
Interpretation decodes the pseudo-code and refers
to static subroutines during computation. It does
not produce a specific routine for a problem.

2.2 The Compiler
For the example of a compiler technique we will use the

so=-called "A-2" compiler as conceived and prepared for UNIVAC by
Dr. Grace M. Hopper and her staff at Remington-Rand's Eckert-Mauchly
Diﬁisibn. This’method, the third to be realized by Dr. Hopper's
‘group, has been checked and in use since mid-November 1953. The first
attempt at a compiler, "A-O", was completed before May 1, 1952, np-2n
shows a considerable amount of refinement based on experience gained
in working with "A-O" and "A-1l",

Information is prepared‘fof the compiler in a pseudo-code.
This pseudo-code mnemonically indicates the function of the code word
and is a three-address code. In general, each pseudo-instruction calls
for a subroutine. Since the basic UNIVAC word is twelve alphanumeric
decimal digits, the operatiom and each address has three decimal digits.
assigned to it so that one pseudo-instruction is one UNIVAC word.

To begin a compilation, the machine is furnished with:

1) the compiling routine tape,

2) the information tape (pseudo-code definition
of problem),

3) the library of subroutines tape,

) the blank tape for the compiled or "running"
program.

It should be noted that a UNIVAC is an alphanumeric binary
coded decimal machine equipped with six to ten magnetic tape units
which read and write (simultaneously if desired) at the approximate

—9-

rate of 10,000 alphanumeric characters per second. The madhine does
not wait for this process to end before resuming computation. This
~ 1s about the best input-output equipment presently available.

One of the basic elements of the compiler is the library of
subroutines. For the "A=2", this library is a "floating-point®
library with tﬁe usual arithmetic, trigonometric, root extraction,
logarithmeric and exponential functions available, as well as in-
put, output and control transfer routines. There are several other
routines called "generative" routines. Dr. Hopper, in her "Glossary"z,
defines generate as: |

Generate (verb) - To produce coding by
assembling and modifying primitive elements
such as parameters and skeletal coding.

When a generative routine is called in, certain arguments
and control words must be furnished in addition to the original
pseudo-code instruction. Control is then transferred to the gener-
ative routine and this routine actually makes up-the coding necessary
to the specifications in the aforementioned arguments,

When the generative routine has finished, control is trans-
ferred back to the compiler routine which places the generated sub-
routine on the running tape. Lo ' - v

To allow for peculiarities-in'séme,prdblems, the programmer
is allowed to specify "OWN CODE" and then immediately follow with the
necessary instructions in UNIVAC code which will go "as is" onto the
problem tape. If the "OWN CODE" is lengthy, it may be put on a tape
as a "special" library routine and called in by the compiling routine
when needed. Generally, only two or three lines of "OWN CODE" are \
necessary. , » |

The compiling routine is read into storage where itAimp
mediately assumes command by transferring some control infbrmétion
to the rumning tape. This information that may be needed by the

2.

4 Programmerts Glbssary) Dri-Grace'Ms Hopper, 1 May 1954

compiled or running tape for changing from one‘memory load to an=-
other, transfers of control from one memory load to another, auto-
matic overflow routines, constants, etc, Then a 60_word block (all
UNIVAC magnetic tape input-output is in 60 word blocks) of pseudo-
code is read into storage and the consecutive processing of each
code word is begun. _

As stated previously, in general each pseudo-instruction
-corresponds to some subroutine in the library. Each subroutine hes
a "call-word" and the library is ordered in ascending values where
(12 «+e{9¢A{B «v. {2)s The compiler looks at the operation
indicated, finds the corresponding subroutine, reads it into storage,
makes a record of the location of the first line of the subroutine
in the running program, and thén transfers the subroutine word=by=
word to the output block. During this word-by-word transfer all
- necessary modifications are made. These modifications ineclude the
three addresses of the pseudo-instruction which are reletive to the
beginning of the working storage block (s). When the entire sub-
routine has been transferred, the next pseudo-instruction is cdlled
up from storage and the process repeated. If the same subroutine is
called for more than 6nce it is recompiled each time with the ex-
ception of the four floating-point arithmetic functions, which are
"frozen" in the internal atorage.element. As the output block be-
comes full, it is written on the runﬁing tape and a new block is
built up.

Should the final running program exceed the storage space
allocated by the compiler routine in making up the running tape
storage layout of 560 words (= 1120 UNIVAC instructions), the run-
ning program is automatically "segmented®. If an iterative loop
existe and there is a possibility that this loop may enclose parts
of two segments if assigned by the machine (thus causing a complete
storage change twice pef iteration), the programmer may simply state
"SEGMENT" at each end of the loop and the machine will accordingly
segment at those points.

]l

The end result of all this (assuming no mistakes in the
pseudo-code)bis a tape in machine code which needs no "debugging"
and is ready to be run. The compiler tape and library of subroutines
tape are no longer needed.

Since the pseudo-code version of the problem may be written
directly from the flow chart many of the pitfalls as discussed in
Chapter I are skirted. The pseudo-code description of a problem is
considerably shorter than the machine code routine and more easily
found if committed. To give an idea of the order of magnitude of
the reduction in number of instructions, the following information
was compiled from an "A-2" manualao.

An optical ray tracing problem was solved with "A-2%". The
problem'was to pass each of twelve rays through seven surfaces. The
initial rays were specified by three coordinates and three direction
numbers, the surfaces by their radius of curvature. The index of re-
fraction on each side of the surface and the distance between surfaces
was given. The pseudo=code took 100 instructions, the final program

took approximately 1000 machine instructions.

2.3 The Interpreter

To pick an example of the "interpretive" mode is more dif-
ficult. Few groups use a "pure form™ of the interpretive method
but rather they add features which particularly suit their needs or
are easily attained with their machine. However, the system designed
for International Business Machines' 701 general purpose digital
computer is about the best example of a straightforward interpretive
method. This system is called "SPEEDCODE I".

Each pseudo-instruction is made up of one three-address
and one one-address operation. The single-address operation is used
for conditional and unconditional transfer of control, address mod-

ifications and error checking operations.

3. The A-2 Compiler Systems Operation Mahual, Remington-Rand, Inc.,
15 Nov. 1953

-12-

The three-address operation section has the usual arithmetic,
trigonometric, root extraction, exponential and logarithmic functions
available for floating-point computation as well as quite a large
number of information transfer and input-output instructions.

The address modification scheme is a programmed "B-line"
type of operation. Any one, any combination of two, or all three.
addresses of the first operation. may be modified simultaneously.

The pseudo-code may be considered to be mnemonic, however,
the 701 is not mlphanumeric. and if the original code is written in
mnemonic code, the punch cards (which are the principal form of in-
put) must be processed on standaird IBM sorting and gang punching équipe
" ment. This processing will ceuse the instruction deck to be punched
with the proper numerical code.

This deck is then read by the 701 and converted to binary
(the 701 is a binary machine) at the rate of 150 cards per minute.
One card has either one SPEEDCODE instruction or five data words.

Thé machine then starts the problem solution by calling up a
pseudo-instruction (now in binary form), deciphering it, and then
performing first the three-address operation and then the one-address
operation. When this instruction has been completely executed, the
next instruCtion is called up and it is deciphered and executed as
above. This process continues in sequence or as directed by transfer
of control instructions until the machine is instructed to print out
the final results and stop.

The reduction in the number of instructions necessary to de-
fine a problem in pseudo-code over the number required by a hand
tailored code should be about the same as in the compiler example,
since these two pseudo-codes are very similar. '

It is noteworthy that both codes are three-address. Many
groups are choosing such schemes because the three-address code seems
to be less succeptable to coding mistakes.

The reader is referred to Appendix A for a short discussion
of two other quite different approaches using an interpretive tech-

nique.

CHAPTER III

A SURVEY OF PRESENT NETHODS

3.1 Other Approaches

There are several approaches to automatic coding, other
than the two basic forms, which should be discussed. While these
methods are no less powerful perhaps, they are techniques which part-
icularly utilize the peculiarities of a certain machine to the ex-
tent that the method is not generally applicable to all machines.

The first of these is the process called "conversion". In
general, binary machines require some conversion process to occur in
order that the input information may be made intelligible to the
machine. This is true unless the input information is already in
binary form. However; few people are willing to write their progrars
in binary, especially non-professional computer users. Consequently,

a system is often provided whereby thé routine may be written in alpha-
numeric characters using decimal numbers. It is the responsibility

of the machine to do’ the necessary conversion to binary. This is
essentially an automatic coding technique - shifting some clerical
work onto the machine for the convenience of the programmer.

Many other featﬁres may be provided at the same time with no-
great amount of éxtra time used.-: Thése ineclude thé usual relative and
symbolic addressing facilities. If, as is often the case, the con-
version program is to be followed by one of the other two basic methods,
selection of subroutines for floating=-point work may be done during
the conversion. ‘Very often conversion is so intermixed with another
of the methods that it is virtually impossible to determine where one
ends and the other begins.

Another technique is oommonly called "assembly". This is
basically a compiler approach in that abroutine of this nature assembles
and modifies subroutines as they are called from the library. The
method often allows for symbolic addresses. Usually no "generative"
type subroutines are found in these methods, but this is about the

b

only difference. Quite a large number of the IBM 701 installations
have developed routines along this line, as well as some other groups.

The so-called "generators" constitute a third approach.

These routines are used mostly by UNIVAC instailations and usually
on either output editing or sorting problems. In general, a "back=-
ground block", a format, or other specifications are given along
with a skeletal form of the coding to be used. This skeletal coding
very often is in a "packed" form and the function of the generator
is to unpack this coding and supply suitable addresses. The entire
machine code routine is then generated. It is apparent that these
routines are restricted in the sense that they are presently applic-
able only - torvery specialized:preblems. '

Several groups are approachihg the problem by using a pseudo=-
code made up of both "real and abstract" instructions. This implies
that the code uses actual machine instructions as well as programmed
instructions. The routine may or may not require notification when
a change from real to ébstract instructions,cor?thefrﬁvérSeéfis“ﬁade.
Such an approach allows the routine to be considerably more fleXiblé
for use by the professional programmer. Savings of time are effected
by doing at least part of the routine at ordinary machine speeds,
which are generally ienfto fifty timeS-greater‘than_the abstract sec-
tion of the routine. . , e ' ;

This idea particularly lends itself to the new Naval Ordnance
Research Computer (NORC) being built for the Navy by IBM. The NORC
is a three-address floating-point machine. It is therefore unhecessary
to program floating-point arithmetic but it is still desirable to use
subroutines for the usual mathematical functions. 'Therefore, the use
of both real and abstract instructions in thé'coﬁpiling routine being
devised is the answer to the problem.

Some effort may be noted in the line of preparing two or
more techniques whiqh use the same pseudo-code. Considerable work
has been done by the Computer Control Compeny, Inc. of Point Mugu,

-15-

California, on such a projeét. The'ultimate.goal of .this group is
to develop methods whereby an interpretive routine will be used to
check the coding and thén the checked pseudo=-code will be given to
. a compiler routine for final preparation of the machihe code. If
possible, it is extremely desirable to have more than one technique
available, since then the technique most suitable for the particular
problem may be chosen. ‘

In addition, virtually all combinations of these methods may
be found so as to form a continuous "spectrum" of techniques. One
of the best examples of such a combination is the Comprehensive System
in use at MIT's Digital Computer Laboratory. Since Whirlwind I is
a binary machine, and input is in the form of alphanumeric binary-
coded decimal punched paper tape, a: conversion program is necessary.
This routine also provides for "floating™ and relative addresses and
selects the proper programmed arithmetic subroutines to allow floating-
point operation. When the conversion is completed, a'biﬁary tape
of the converted problem routine may be punched out if desired and
necessary subroutines are then compiled from a library recorded on
magnetic tape, including an interpetive routine to perform the actual
problem solution. ‘ ' ‘

.2 Factors'Involved in CthSih & Technique .
It is apparent that the choice of a particular method of
automatic coding definitely is not based on the inherent virtues or

lacks of the two basic forms or any of the other ‘approaches mentioned.
Rather, it is the characteristics of the machine involved which are
the major forces in guiding one group in-one direction and another
group some other way. Even more precisely, the amount and avails
‘ability of storage seemsvto have the biggest single effect. However,
modifying effects are attributable to problem types encountered,
alphanumeric qualities of the machine, automatic checking features,
serial or parallel operation, personal likes or dislikes of the
programmer preparing the method, etc. B

-16-

In order to attempt a compiler or assembly operation, a

large amount of relatively high speed storage is a "must". This may
be either magnetic tapes or drums. This is even more important if
the compiled routine is "unravelled" (sometimes.ealled subprograming),
which implies that the cempiled routine has no iterative loops. Every
instruction is written down before starting computation and no later
modification of instructions is performed. In certain cases this
may allow a considerable time saving, but fast input-output equip-
ment (to high speed storages) is necessary since the program becomes
very long.
Other factors that tend toward compiler or assembly routines:

1) alphanumeric and automatic checking features,

2) minimal access coding requirements,

3) repetitive type problems.
- On the other hand, interpretive techniques are often found
withs)

1) parallel binary machines with little or no auto-
matic checking,

2) machines with slow input-output equipment,
~ 3) one-shot type operation.

Most research type problems, for which only one ‘solution is
desired, lend themselves well to an interpretive technique. - Problems
that will need to be solved a number of times may more effectively
be handled by a compiler since the compilation results in a specific
routine and re-assembly is not needed for each solution.

It is noteworthy that there are a few groups who have studied
the virtues of automatic coding and decided not~toAadopt.apy such
technique. It seems that in these cases the tyﬁe of problem en=
countered is the major factor. These are the installations which
have problems of large size which must be recomputed (with different
input data) meny, many times. The geﬁeralvfeeling is that such a
problem is best solved by hand tailoring the most efficient code
possible. '

~17-

At this point it would be well to state that problem type
largely determines how much any particular method is used, although
the generality of the method has some effect. Some installations
(a surprisingly large number in fact) use their automatic coding
. methods on virtually every problem they have to solve. Very Often,
‘however, these installations do not have problem types that vary a
great deal and therefore they have designed a technique which in
detail specifically suits their needs. On the other hand, some
installations use their technique on only a portion of their problems.
These are generally groups that meet a wide variety of problems,
some of which are of a highly repetitive nature.

In any event, one may find installations that use no auto-
‘matic coding, other instaliations that use almost nothing but auto-
matic coding methods, and practically all degrees of usage between
these two extremes. '

3.3 "Post Mortem" Technigues

Considerable work is being done on routines which aid in
the location of mistakes in the problem routine. These are called
fipost mortems" because they attempt to diagnose the trouble from
which the routine "died". They may operate either automatically or
on demand. In general they provide the programmer with information
which should be helpful in locating the mistake. This information
generally includes:

1) location in the progrem.at.whi¢h the mistake was
detected,

2) contents of the accumulator and other registers,

" 3) the contents of the storage locations selected by
the programmer,
and may include:

1) a record of the last few control transfers that
were effective,

2) present contents ofany storage locations that
have been changed since the start of the program
(replacing feature 3 above)

(For an example of this type of operation see the Summer Session
Computer under MIT in Appendix B.)

Unfortunately, many methods that provide highly desirable
information, if adapted into an automatic coding technique would
slow down computer operation an intolerable amount. This results
from the fact that many methods require that a record be kept of all
' storage changes, transfers or cohtr019 etc. which occur. This in |
turn means that each instruction must be individually checked and
the record accordingly changed or not changed. For this reason a
compromise is usually necessary. This often results in the adoption
of a "tfacing" routine. This routine is a "dynamic" technique, which
is called into use only when a program is known to have mistakes.

The routine then proceeds through the entire program,'step-by-step,
typing out selected information along the way. This information may
be typed out after completion of each instruction or only upon finding
certain instructions. When the problem routine is’"debugged", the
tracing routine is completely removed from use and the problem runs

at the usual speed with no record kept for mistake location purposes.

CHAPTER IV
A SURVEY OF CONTEMPLATED TECHNIQUES WITH COMMENTS

o hel Terminologx
' 'From the very outset of this survey, it was evident that

oné of the biggest problems was going to be that of terminology.

Not only does virtually every machine type have its own language,

but some discrepancies are found even among users of the same machine
type. '

Take for example, the type of address assignment scheme

(allowed by most autocoding techniques) whefeby-the person preparing
. the code or pseudo-code for the machine designates blocks or regions
of coding by symbols (generally‘alphanumefié); which thay have some
particular significance to that person. It is the duty of the machine
to assign definite or fixed values to these addresses, They may be
thought of as "floating" addresses by the programmer, who doesn't
generally know or care at the time the routine is written what these
values will be. But besides being called "floating" addresses, they
obviously may be called with equal accurady "block", "regional" or
"symbolice" addresses.

Fortunately, more and more people are becoming acutely
aware of this problem.. Instead of arguments with no ending, com=
promises are being effected., Many people are coming to the viewpoint
that it is high time to adopt an attitude of cooperation and show
respect for the concepts of others. 1In this way a standardization
of terminology may be realized in the near future and this will pro-
mote the exchange of ideas and experience. This in turn eliminates
duplication of work and thereby:saves time which is all too valuable
for the professional programmer.

42 Universal Codes
An element that many believe to be both a cause and result
of the pressing need for a standard terminology is the interest in

=20=

and desire for a "Universal Code". Interest was expressed by many
groups and actual work by some people has begun. Ideas along this
line were about as follows: '

1) the code would be a "symbolic logich
mechanized for computing purposes.

2) the code would be written directly from
a "flow chart" of the problém = in fact
the flow chart would be the code.

3) the person preparing a problem would
write the program in Universal Code,
theorectically at least, not knowing
what machine would be used. He would
be aided in this by a "dictionary" com-.
pletely describing the code and its
standard subroutines (also in Universal
Code) .

4) each machine would have its own personal
"translator" which would prepare the
machine code problem (a compiling tech-
nique).

These ideas are largely those of Dr. Saul Gorn of the Bal-
listics Research Laboratory at the Aberdeen Proving Grounds. Dr.
Gorn has done a considerable amount of work along this line of
thought. He emphasizes that the great advantage of such a scheme
lies in the fact that the n£low charting" of a problem is an ability
and training that is an absolute ‘necessity for any good engineer,
executive or scientist regardless of whether or not a computer is
involved. Equipped with the knowledge of some conventional symbolic .
logic and a dictionary on universal COding;tthese‘people'could easily
prepare their own problems for computation merely by analyzing them,
which they certalnly do anyway. ._

It is understandable that Dr. Gorn should arrive’ at thls
point of view. The Aberdeen Proving Ground is a multi-machine in-
stallation with three large-scale machines, namely ENIAC, EDVAC and
ORDVAC. The prospect of learning three machine codes (they also
have a Bell Relay Computer and IBM equipment) is no particuler ‘
pleasure. Also, a programmer is usually‘only‘interested in how soon
he can use g machine, which may be any one of several if a Universal
Code is used. | ’

-21-

4o3 Multi-machine Installations
In a multi—machlne establishment the interesting question

arises, "Is it feasible to use these machines in elther parallel

(for checking) or serial (for speeding computation)?" The Aberdeen
group has tried both approaches with notable success. Perhaps more
interesting than the parallel operation (which is actually built in-
to some machines)'is the serial use. They have used all three machines
in a sort of "assembly-line" problem solution,. each machine doing

a phase of the problem for which it was particularly suited (or at
least suited as well as the others). The final output on punched
cards was then taken to the IBM section for printing.

This bit of information certainly lends credence to the long
standing opinion of Dr. Hopper that an effort should.be made to build
small sized computers with very general and elementary instruction
codes. The inference is thdat the person who needs a large install-
ation could operate as many units as necessary in serial. Ultimately,
the object is for the computers to dlrectly control each other. The
whole system could then be programmed to appear to be a large scale
machine with any or all facilities desired. The "programmed hard-
ware" (e.g. "B-lines", multi-address codes, etc.) cannot fail be-
cause it does not actually exist.

This aspect should at least be investlgated because of the
interesting possibllities. For example, suppose these units ‘could
be produced at a reasonable price and there were plenty of units
available since they should admit to being rapidly as well as in-
expensively built. The small user could then operate parallel units
for checking. The large user, while he may not be able to afford
a duplicate set, could almost undoubtedly afford at,least_one.spare
~unit. Instead of replacing a faulty component or chassis of come-
ponents, he may noﬁlreplace'an’entiﬁe”ooéﬁutef.:'This should result
in a decrease of time lost due to machine failure even over the pre-
sent day "unitized" machines with adequate_spares. From past ex=

perience with computer maintenance, the ad#antage‘of having removable

units and available spéres is recognized by‘most compﬁter'peOplea

4e4 The Analytical Differentiator
While such operation is probably far in the future, attention

should be called to some work that points in this direction. This

is the method developed by Mr. Harry Kahrimanianl for analytical dif-
ferentiation with a digital computer. Mr; Kahrimanian submitted
this technique for a Master's thesis at.Temple University while an
employee of Remington-Rand.

The method analytically computes any or all of the derivatives
from one to ninety-nine of most of the elementary functions and any
finite combinations thereof. There are twenty-four elementary funce-
tions given and with all finite combinations of these possible, most
cases may be obtained.

The desired function (made up of. the twenty—four) is stated
in symbolic form, along with the derivative or derivatives desired,
and the machine does the rest. The output is the analytical expres-
sion for the derivative in the same symbolic form, although not nec=-
essarily the "simplest" mathematical form. ‘Reducing'the derivative
at each step to its 31mplest form is not necessary (nor easy) for the v
computer. ’ ‘ f S aLb N 't : ,ﬂ‘ S , |
Some examplestdf‘thé wbrkvéfﬂthe routine (taken from the
thesis): | _ R

1) Determine the first eight derivatives of:

y=a sin> (b x°)
Computer time used: 17 seconds
2) Determine the 15th order derivatlve of the
functions.
= (x + l)3 sin’(2x + l)2
Computer time used: 23 seconds

1. Analytical Differentiatlon by a Digital Computer, Harry S.
Kahrimanian, May 1953

-23=

3) Given: (e = epsilén)
R
%g =acos P (1 - % sin?) 2

%g =cos B (1+ e cos® 1))

%g = a'l (1- e? sin? ¢)2 (1 + o1? cos?)
Determines gfg through dlsm
ands gfg through dlsg
dm2 dm;s

Gompute: time used: 4 minutes, 25 séébnds

This is one step farther than our present concepts of auto-
matic coding - that is, the computer taking on itself the duty of
performing mathematical functions; not just arithmetic, and giving
~ the answers in a symbolic.form.' The output of the Kahrimanian dif-
ferentiétion is in a pseudo-code which is usable by the "A-2" com-
piler. The compiler takes this'pseudo;code'oﬁtput, compilés the

machine code and thus gives the finai,form'for_numerical evaluation.

4.5 The Form of Pseudo-codes

‘ ' As a matter of fact, the pseudo=-code outputvof the differ-
entiator goes through a stage of "translation“ before the compilation
actually begins. This is interésting.because it brings up the pos-
sibility of having several pseudo-codes, adapted for various type ,
problems, where each such-bode would have a M"translator" which would
put the informstion into a form usable by the compiler routine..

The pseudo-code for use in (say)‘accouhting problems would
resemble as closely as possible the format that the accountaht act-
ually uses in his everyday work. The pseudo-code for the scientist
or engineer would resemble the equations actually used in common -

o

‘notation. .The pseudd-éode for the executive would be in terms part-
icularly suited to his needs. '

This is fundamentally the motivating concept of the "algebraic" -
approach - to make the coding so simple that very little has to be
rewritten and few if any new methods or notations learned. Most pro-
grammers feel that things are heading this way. .This does not mean
to&ard the interpretive algebraic methods, but toward the idea of
having a notation for coding consistent with everyday usage.

Professor Charles W. Adams of MIT points out that two pro=-
blems immediately confront us when an algebraic type code is forme
ulated. First, mathematical notation is not entirely unambiguous in
the sense that one problem may often be written several ways, or con=
versly,a set of equations may sometimes be interpreted several ways.
Secondly, and by no means insignificant, is the mechanical problem
that arises - the typewriters and similar equipment that is used in
preparing codes just doesn't have the necessary symbols available.

In other words we are shackled by the design of a relatively insign-
ificant (compared to a computer) piece of auxiliary machinery.

However, it seems that modifications of this equipment is prohibitively
expensive and there cannot be much hope for a change in this situation
for some time to come., ' AT

In any event, ihis idea of having a’ different pseudo-code
for each problem type is really the dual of Dr. Gorn's approach. Dr.
Gorn suggests one code for many machines, this latter idea suggests
many codes‘for one machine.

These ideas are not incompatible if we think of the one ,
machine having many codes as the "universal" machine. .That is, there
would be many pseudo-codes, each pérticularly adapted to a certain
type of problem} and each pseudo-code would have a translator assoc-
iated with it which would translate that pseudoééode tovthe Universal
Code of the non-existant universal machine. Thempfoblem,could then -
be solved by any machine which had a translator that could express
the Universal Code in its own machine code. As a matter of fact,

25

this procedure is exactly that followed by theidifferentiator,tal—
though the "Universal Code" involved is the péeudo-code for the A-2
compiler.

The attitude that a programmer takes on this matter depends
pretty much upon whether he has one problem which he may solve on any-
one of several machines or several problems and only one machine
available, ' '

4.6 _Two Interesting Trends in the Computer Field
Two very interesting lines of thinking, which appear to be

of recent origin but already have.widespread acceptance are these:

1) a willingness to share ideas and work with
other (and often rival) computer groups;

2) the opinion that the internal speed of a
machine is not too critiecal.

A good indication of this new thinking, as indicated in 1)
above, is the library of information accumulated in the process of
preparing this survey. The project was tackled with some reservation
and apprehension which may be attributed to the fact that an in-
quisitive graduate student writing a the31s does not have a very strong
argument for requesting information that may. be considered "personal
property" by a computer group. However, the collection graduated from

a drawer to a shelf and wound up as'a two’ foot (ﬁlus) stack. on a chair
with enough more reports promised to nearly double the stack. People
who had no reports available at the time, often wrote long letters
giving some of the details of their work. Needless to say, this was
greatly appreciated. The large number of symposiums, conferences
and seminars on the subject also indicates this general trend.

This slso adds to the desire and needsvor‘a standardization
"~ of terminology. A standardknotation iekessentiai for communieation
of any sort and from this need will come greaterfeffortseto resolve
the difference. A great deal of work,along this line has been done
by Dr. Hopper and a committee of the Association for Computing
Machinery. "

26~

As for the second trend, whethef‘a problem takes eight
machine hours or ten machine hours to run does not seem to make much
difference if the problem preparation time can be cut from months.
to weeks or even days. Most programmers agree with this in refer-
ence to problems that are not highly repetitive; As previoﬁsly atated,
most programmers agree that a hand tailored routine is still the
best for problems that will be done over. and.over.

Dr. Hopper believes, and hag: some: examples which shoy,’ that
the result of a compiling technique should be a routine just as ef=-
ficient as a hand tailored routine. Some others do not completely
agree with this. They feel the machine-made- routine can gpproach (and
possibly very closely in most cases) hand tailored coding, but they
believe there are "tricks of the trade" that apply to various special
cases that a computer cannot be expected to utilize.

~ Again, this business of obtaining a very efficient resulting
. code is not at all critical except for highly repetitive problems.
It is doubtful that a production chief would ever complain over a few
hours of machine time if perhaps several weeks or months of over-all

solution time were saved on most problems.

47 Conclusionék

To use a rather trite phrase,'néufomatfbfcoding‘is.hére to
stay". This seems obvious, not only from the progress that-has been
made, but also from the great amount of work,plahned for the immed-
iate future and the widespread interest in these techniques. Not
much information was obtained as to how many people are interested
in this work even though they don't have a compﬁter., However,
virtually every group that does have a machine of some sort has at ‘
least thought about the problem. ' '

The time is certainly "ripe" for great strides to be made
in standardizing termlnology and‘thereby opening the way for an ex=-
change of information. This will in turn lead to better and better
automatic coding techniques by eliminating much duplication of work

2=

and permitting incorporation of ideas which are best adapted to the
machine involved. ,

It is sincerely hoped that this paper may in some small
way aid in promoting these ideals. '

28u
APPENDIX A _
ADDITIONAL APPLICATIONS OF THE INTERPRETIVE METHOD

Two quite different epproaches to the general problem of
coding were investigated to some degrée. : ‘

The first of these interpretive methods is the so-called
. malgebraic" approach. By this we mean methods in which the inform-
ation (equations and data) are given to the machine in a form which
~ approximates the mathematical notation as closely as possible. This
‘means that once the problem (the:class of problems is somewhat res-
tricted) 1is formulated on paper in algebraic notation it is pratically

coded for the machine.

Reports on two versions of this approach were available.

One of these was prepared for Whirlwind I by Dr. J. H. Laning of the
Massachusetts Institute of Technology's Instrumentation Laboratory
and the other for UNIVAC by Mr. J. Robert Loagan of Remington-Rand's
Eckert-Mauchly division. Although Dr. Laning's technique uses notation
which more closely approaches ueual.mathematical notation than Mr.,' '
| Logan's method, we will use Mr. Logan's work as descriptive example.
The reason for this is based on the fact that UNIVAC is an alpha=-
numeric binary-coded decimal machine and the technique applied is
truly an interpretive one per the definition given in Chapter II.
Since Whirlwind I is a binary machinevand input is~by paper tape on
which is punched a Flexowriterl code version of the problem, there
must mecessarily be a Flexo-to-binary conversion, during which some
of the work required by the peeudo-codevie carried out. . This does
not fulfil our definition of a "pure" interpretive method.

Mr. Logan's technique is called "Short Code" due to the
abbreviated length of the problem information input necessary. By
virtue of UNIVAC's direct Supervisory Control typewriter input and
output (as well as high speed magnetic tape) the method is extremely
flexible. Since the Short Code is a floating-point routine primarily

1. Flexowriter is the trade name of a standard line of secretarial
equipment.

29

intended for use as a mathematical research tool, ifliévdeSirable
to be able to change coefficients, equations and constants in the
middle of a computation. With the Short Code no "machine code" in-
put tape needs to be reworked, the new information may be typed
directly into storage by the Supervisory Control typewriter.

Original information may be typed directly into the machine
for short problems or prepared on magnetic tape'in fbe case of more
lengthy problems. Answers may be obtained.either dn'magnetic tape

or on the Supervisory Control typewriter at the option of the pro=-

| grammer., ,

The problem data is in the form of floating-point numbers,
The instructions sre in the form of two-decimal-digit "packets"™. The
twelve decimal digit UNIVAC word can accomodate six such packets, and
as many words as necessary may be strung together to state the.equation.
Each word is deciphered in packets from right to left. Each packet
may represent an alphanumeric variable or an operation. Eighty var-
iables are in the machine at a given time (although more may be on
tape) and these are denoted by one letter (S through Z) and one number
(O through 9). A variable must be assigned a value before it is used
in any equation. This means the method of solutidn,must be explicitly
stated. o SATE RO el e A - ‘
The operations available are the arithmetic functions, in-
tegral root and power routines, logarithmic, trigonometric, exponential
and logical operations. AIn>addition; bgtionalnétops or "breakpoints®
and input-output instrﬁcﬁions are provided. Designations for "equal™
signs and parenthesis are given.

Although the Short Code 1s not particﬁlarly mnemonic or in
mathematical notation, nonetheless, equations_areiwritten in thé form -
of equations. For example, if one wished to evaluate

a=(b+c)sind

(assuming b, ¢ and d to be previously assigned
values)and letting a = 80, b =80, ¢ = 82,
d =83

=304

he would write (in two UNIVAC words):

sl 07 s2 02 60 s3
00 00 00 sO 03 09

Writing the algebraic equation above the Short Code symbols:

a = (b + ¢) sind
80 03 09 81 07 s2 02 60 s3

These comments should explain the points of question:

1) the "equals" sign assigns the value computed
prior (to the right) to the equal sign to
the variable immediately following it.

2) a single packet of "00" tells the machine
to "skip" the rest of that word. No
operation may follow the equal sign or a
ngkip”.

Dr. Laning's method is essentially the same with these note-
worthy differences:

1) The equation used as an example for the short
code would be written by Dr. Laning as:

=(b+c) P d

2) Dr. Laning provides a list of twanty-three
functions (denoted F%, F2, ... F23) yhich
‘include the regular and inverse trigonometric,_

. square root, exponential, logarithmic and ‘

" hyperbolic functions. ‘Also provided is a
method for solution of ordinary differential
equations by the method of Gill, which is a
variation of the fourth order Runge-Kutta
technique. An nth order system must first
be reduced to n first order equation. d/at
is represented by D. :

3) Allowance is made for 250 variables in high-
. speed storage and an easy method is provided
for assignment and recall of variables to
the drum. Any lower case letter without any

subscript from O to 1023 may be used.

3k

4) No change can be made in the middle of com-
utation since Whirlwind I does not have a
Supervisory Control input typewriter. Output
is on magnetic tape which may later be printed.
Both methods have some automatic error diagnosing aides.
The second rather different use of interpretive techniques
is the approach of Mr. Jemes E. Kelley, Jr. of George Washington
'University's Logistics Research Project.2
The Logistics Research Project Computer is a special purpose
machine designed to perform simple operations on large masses of data.
It is & binary coded decimal machine, using the binary excess-three
code. The machine is controlled by a 40'program step plugboard. This
board allows about twenty different operations which include the arith-
metic operations (except division) and a vSriety of control and re-
" arrangement operations. All operations are performed in five internal
high-speed registers. Storage consists of a drum with over 14,000 '
twelve-digit storages available. Information is entered on or ex-
tracted from the drum with either teletype equipment or magnetic tape.
‘Mr. Kelley devised several methods Based on interpretive
techniques which make this special purpose machine appear to be a gen=-
eral purpose machine. In ‘80 doing he‘removes,two very serious limit-

Jer program res-

triction,

2) removal of a plugboard restriction which allows
only five branching operations. This removal
makes any number of independent sequences '
available.

To accomplish this, Mr. Kelley designed a plugboard (after
choosing suitable conventions) which selects and interprets para=
‘meters stored on the drum. The parameters in turn direct the plug-
board to perform specified operations on other drum stored data.

2. Information taken from a peper, "Extensions of Programming'for‘the
Logistics Computer", by Mr. Kelley; prepared for publication in
the June 1954 issue of Logistic Paper . ‘

-32-

The instructions (or parameters) on the drum are four address
and sequencing is consecutive (by the plugboard).' Three operands and
a result are used since the machine considers the arithmetic oper-
ation to be a compound multiplication and addition. That is, con-
sidering the four addresses to be u, v, y and x:

in general uy +ve=x

for addition Ly + v = x

for subtraction (- 1) = x
for multiplication uy + 0= x

For logical operations:

u = address of next order if v contains
a positive number

v = address of antecedent
operand shifted right retaining sign if v>0
pera {shifted right cyclically if v40

x = result

Two options are available for output'instructions (via
punch). '

Mr. Kelley mentioned in a letter that almost all of his work
has been in the nature of research and therefore problems solved have
been limited to those for testing the various plugboard designs. Mr.
Kelley feels however that these techniques may be applled in such a
way to certain problems that solutions may be obtained for problems
which otherwise would be impossible (or at least very dlfficult) to
solve otherwise with the equipment available to him. o

| Several efforts along this same line have been made for the
IBM CPC. However, the only concrete information (other than Mr. Kelley)
has come from Mr. T. M, Bellan of McDonnell Aircraft in St. Louis and
Mr. Rex Rice, Jr. of Northrop Aircraft in California._(see Appendix B).
‘Tt should be stated that this particular aspect was not carefully in-
vestigated due to the great amount of information obtained for large-

scale machines.

=33

APPENDIX B
COMPUTER GROUPS INTERESTED IN AUTOMATIC CODING

It is felt that a complete list of all the people that have
been coniacted in regard to this thesis, along with a brief description
of the work in progress by each group, will be of interest to most
computer people. This feeling arises from the fact that it was be=-
lieved upon undertaking the thesis that at most probably a dozen
groups would be involved and only seven were actually known. However,
by the time this appendix'was compiled, a total of fifty seven groups
had been written and in addition personal contact with another half
dozen groups was made. Even then, all the possibilities were by no
means exhausted. . '

This list isioffered in the hope that it will promote cor-
respondence between the various groups and thereby effect a sharing
of ideas and information. With this in mind, comments are made where
pertinent as to the availability of literature. Those groups which
presently have no reports available are in general willing to discuss
their work by letter or personal contact.

The list is alphabetical by name of the group involved. The
individual names given are those of the people with whom conversation
and/or correspondence was carried on. All government agencies are
listed under United States Government._ Descriptions are abbreviated
to keep the list short enough to be readable. All techniques are
"floating~-point" unless otherwise stated.

Apologies are offered to those groups that should have been
contacted and were not due to their interests being brought to my
attention too late for correspondece or else not at all. |

In the event that any group has been misrepresented in this
list, owing to faulty interpretation of their literature or corres= |
pondence, sincere apologies are offered. Every effort was made to
avoid such mistakes but it is reasonable to assume some listings will

be incorrect.

Y

1) Bell Telephone Laboratories Mr. R.W. Haming
Murrey Hill, New Jersey

No machine at present, interested in IBM 650,

Mr. Hamming is interested in a "from the top down" approach to
automatic coding. This sounds like an algebraic approach. He states
that the use of the method should be "natural". ‘ '

2) Boeing Airplane Company Mr. R.E. Porter
Seattle 14, Washington Physical Research Unit

IBM 701 - Large library of "general purpose" routines, many of
which are routines for solving problems or parts of problems peculiar
to Boeing. These are arranged in a final program by an "assembly"
routine. Output (of routine) is on either magnetic tape or cards.

No reports presently available.

3) Burroughs Research Laboratory Mr. Alex Orden, Manager
Paoli, Pennsylvania ,

Burroughs Laboratory Computer, intermediate speed with drum for main
storage unit. Using 1) relative address modifier, 2) automatic step-
by-step type-out routine for program checking, '3) a generative type
of routine which sets up an "unravelled" program (no iterative loops)
for matrix multiplication to save computer time.

L) Columbia University Mr. Joseph A. Scott
632 West 125th Street Electronic Research Lab.
New York 27, New York

No work in this field at present or contemplated.v

5) Cons. Vultee Aircraft Corp. . Mr. Ben Ferber
San Diego 12, California Engineering Computation Lab.

Expecting delivery of ERA 1103 this summer. Auto code is being
prepared for this. No information yet published.

6) Curtiss-Wright Corporation ‘Mr. Russell W. Everett
Wood-Ridge, New Jersey Public Relations

No literature available.

7) Computer Control Co., Inc. : Mr. Russell C. McGee
Point Mugu, California :

Raytheon RAYDAC, large-scale general purpose, serial memory and
control units, parallel arithmetic unit, binary (36 bit word), four

-25-

address, automatic checking by weighted counts, magnetic tape input-
output. Developing and using both interpreters and compilers using
the same pseudo-code with object of using interpreter for code check-
ing and then using checked code to instruct compiler. Some reports
available. "

8) Computer Research Corp. ‘ Dr. AJD. Hestenes
3348 West E. Segundo Blvd. Director, Applications Dept.
Hawthorne, California

Has initiated studies of automatic coding techniques, however, no
material suitable for distribution at this time.

9) Consolidated Engineering Corp.
See ElectroData Corp. (affiliate of CEC)

10) Douglas Aircraft Company, Inc. Mr. John Lowe
Santa Monica, California

IBM 701 = Has developed an assembly program which translates symbolic
to actual coding. The use of the word "assembly" by Mr. Lowe suggests
a type of compiler technique since some other IBM 701 groups perform
a compiler type of operation which they call "assembly". No reports
available at present.

11) ElectroData Corporation Mr. Kenneth L. Austin, Super.
717 North Lake Avenue Iiason & Instruction Section
Pasadena 6, California Technical Service Dept.

ElectroData Computer (formerly CEC Computer), decimal machine, 10
decimal digits plus sign per word, single address, series-parallel .
operation (i.e. digits are parallel, words are serial), 4000 word
drum storage plus an 80 word "quick access" section (0.85 ms. as com=
pared with 8.5 ms. in regular storage section) internal checking,
"B=1line" type operation, paper tape inpute~output. Has done consider-
able work on interpretive systems, two have been codes, checked and
in use. One system (IDA) is a conventional interpretive technique,
the other (DOTI) is a faster more versatile technique developed to
utilize some of the unique operating features of the computer.
Literature describing these systems not yet published.

12) Eckert-Mauchly
(See Remington-Rand)

13) Engineering Research Associates
(See Remington-Rand)

-36-

1) PFerranti Limited Mr. Eric K. Robertson
Moston . - - Computer Sales Department
Manchester 10, England

FERRANTI MARK I* (a later model of the MARK I), serial, binary (20
or 40 bit word may be used), electrostatic storage of 10,000 bits,
drum storage of 650,000 bits, "B-line" operation, paper tape input-
output. Straight machine code uses only the 32 teletype characters
so that both addresses and instructions are written in teletype code.
This gives a base-32 number system and the least significant digit

is to the left. Ferranti is developing a simplified mnemonic code
using decimal addresses and B-line. Not yet published. Considerable
work had been done in past with library of subroutines technique.

15) General Electric : Mr, H.R.J. Grosch
Post Office Box 196 or
Cincinnati 15, Ohio Mr, Donald L. Schell

Aircraft Gas Turbine Div.

IBM 701, Two systems developed by this group - GEPURS and SEESAW.
The writer believes these are interpretive techniques. GEPURS is a
3 address decimal system designed for use by a novice. Has usual
arithmetic, trigonometic, logarithmic, exponential and logical
functions. For the "professional" programming group at G.E. a more
flexible system (SEESAW) was devised, single address decimal system,
programmer may go back and forth from pseudo-code to machine code.
Pseudo-code has all of regular arithmetic, logical and other functions
and some structure as regular machine code. Use of floating or
symbolic addresses and relative addresses allowed. Published lit-
erature will soon be available.

16) General Electric Mr. Allen Keller
920 Western Avenue Medium Steam Turbine Dept.
West Lynn 3, Mass.

IBM 701, Has devised several noteworthy r outines. O(ne is a con-
version routine which converts alphanumeric coding (either actual
machine code or pseudo-code) and decimal numbers to binary form and
punches out a binary deck. The other routine, IT=2, is an "assembly"
routine which makes up the final program from either real machine

code or the pseudo-code. All problem routines are made up and checked
for use with IT=2, Since the machine used is not at Lynn, all input
data is.telegraphed to the machine, where the proper pre-coded program
is selected and run using LT=2. Output is wired back to Lynn. This
technique is feasible because problems are of limited types. Very
good write-ups available.

=37

17) George Washihgton University Mr., James E. Kelley
707 22nd St. N.W. Logistics Research Project
Washington, D.C.

Detailed description of Mr. Kelley's approach in last half of
Appendix A. Reports available.

18) The Glenn L. Martin Co. Mr. Kenneth D. Engle
Baltimore 3, Md. Sales Department

Machines used only on specific problems all of which bear a security
classification. No literature available.

19) Harvard University ' Mr. John Harr
Cambridge, Mass. Harvard Computation Lab.

Not much being done in this line. They do use a "coding box" which
facilitates punching of paper tapes by automatically introducing sub-
routines etec. This is a different approach to the problem.

20) Hughes Aircraft Co.. Dr. E.C. Nelson, Head
Culver City, California Advanced Electronics Lab.
Hughes Research & Dev. Lab.

It is understood that Hughes is building their own machine. A little
work on autocodes has been done but no reports available.

21) The Institute for Advanced Study Dr. John von Neumann
Princeton, New Jersey or
Dr. H.H. Goldstine
School of Mathematics

IAS machine. No systematic studies have been done, however, several
special codes have been developed. Literature soon to be available.

22) International Business Machines Dr. G. Truman Hunter
20 E. 57th St. or .
New York, New York Mr. Harlan Herrick
‘ Applied Science Dept.

Detailed description of Speedcode I for IBM 701 in Chapter II.

In addition, some work has been done on "assembly" routines and I
understand, from other sources, a study of an algebraic approach is
underway. Reports on Speedcode presently out of print but will be
available shortly.

23) The Jacobs Instrument Co. Mr. Donald H. Jacobs
Bethesda 14, Maryland President & Technical Director

=38
JAINCOMP series. No information has been published on subject.

24) McDonnell Aircraft Corp. Mr, T.M. Bellan, Supervisor
Post Office Box 516 Dept. of Applied Math.,
Sto Louis 3’ Mo.

Two IBM CPC's, basic operation controlled by plugboard, actual problem
solution controlled by deck of coded program cards. Have tried two
different techniques, one with some success. This involves wiring

a set of plugboards which will provide the means for developing the
program deck. The method is limited to simple coding changes. No
reports available.

25) Mass. Institute of Technology Prof. Charles W. Adams
Cambridge, Mass., . Digital Computer Lab.

Whirlwind I, binary (16 bit word), entirely parallel, magnetic
core, drum and magnetic tape storage, paper tape input, output on
scope which may be photographed automatically or magnetic tape which
is printed later.

Two systems have been develdped: 1) The Comprehensive System
provides the same single address operations as the regular machine
code except that these are floating-point operations. Two Whirlwind
words (32 bits) are used as the basic word length and the programmer
may pick any number of bits for the exponent, that is, he initially
chooses a (30-j,j) number system with (30-3) bits in the mantissa
and j bits in the exponent. %s the commonest choice giving a

range of approximately 109 to 10+ Alphanumeric address assign-
ments (floating address), and relative addresses may be used, a pro-
grammed cycle counter operation is provided. Programmer may go back
and forth between pseudo-code and machine code. Program is typed on
Flexowriter equipment and a conversion is ‘necessary to straight binary.
Machine does this (all routines and subroutines are ‘on the drum) and at
the same time selects the proper sets of arithmetic routines according
to the (30~-j,j) number system asked for, also assigning all alpha-
numeric addresses. If asked for, the machine will give a ™binary
tape" of the converted program. The machine then begins the problem
solution, interpreting an instruction and performing it, selecting

the next instruction etec. The Comprehensive System is used for
virtually all problems solved on Whirlwind I. Reports soon available.

2) For teaching purposes, the so-called "Summer Session Computer®
was designed. This is a programmed floating-point, general purpose
computer, designed so that most human coding errors will be detected
by the machine. The single address code is in every way designed to
'~ be mnemonic and the computer is decimal as far as the user is concerned.

The machine discriminates between instructions and numbers for
purposes of mistake detection. Alphanumeric addresses may be used
and a cycle counter function is provided. "Remainder" and "excess"

- =39-

registers for division and multiplication are provided with logical
operations possible on the contents of these. A very large number of
other logical operations are provided.

In case the machine detects a mistake in coding such as finding
an instruction in the arithmetic unit or a number in the control
unit, it stops and gives a "post mortem" which includes:

1) location of present instruction which
caused mistake to be noticed,

2) contents of accumulator and any other
address specified by the instruction
in (1) above,

3) last ten "jump" or transfer of control
instructions which were performed,

L) contents of every memory location which
has been changed since the program started.

This system is used only by students at MIT who are in introductory
computer courses.

The program for the Summer Session Computer is on magnetic tape.
It may be called into Whirlwind I by merely pressing a button. The
machine thereupon becomes the Summer Session Computer and information
that is read on the paper tape reader is converted and interpreted
by the SSC routine. Reports available.,

26) Mass. Institute of Technology Dr. J.H. Laning
Cambridge, Mass. Instrumentation Lab.

Whirlwind I. See Appendix A for discussion of Dr. Laning's algebraic
approach. Excellent report available. 53,14

27) Monroe Calculating‘Machinejcb.f ilM?.*ikafGérdéffr
Morris Plains, N.J. ‘ Applications Research
, Monrobot Laboratory

Monrobot machines (at least two sizes). The larger machine has un-
usually large drum capacity and numerous tape upits. This group

is engaged in a study of automatic coding techniques, no reports yet
available. Mr. Gardoff states, "The smaller Monrobots utilize a
four address system and numerical techniques, which together, yield
a procedure not too unlike common algebra. The larger calculators
are somewhat similar.® B Sl

28) Northrop Aircraft, Inc. Mr. Rex Rice, Jr.
Hawthorne, California Asst. Chief of Computer Serv.

IBM CPC's and "a new machine of advanced design that is on a res-
tricted contract"., Have done a considerable amount of work on auto-
codes for the CPC but no reports published. Effectively this type

. ;-4‘0;‘ﬂ

of autocoding is a method whereby only data is fed from carde and the
sequence of operations is on a plugboard.

29) Oak Ridge Nat'l Lab. ‘ Dr. A.S. Householder
Post Office Box P = = oo '
Oak Ridge, Tennessee"

ORACLE. No work to report at this time. The writer understands
that there is some interest, however. : :

30) The Rand Corporation Mr. Wesley S. Melahn
1700 Main Street
Santa Monica, California

~ IBM 701. No written report yet available, however, Mr. Melahn des-
cribes an "assembly" program that they have been using which appears
to be a compiler type of operation. The pseudo-code consists of
mnemoni¢ alphabetic symbols with decimal and/or alphabetic addresses.
The machine does as much of the clerical work as possible including
incorporation of library routines into the final program,

31) RCA Vietor . Mr. John H. Waite, Jr.
Cooper Street - ” Bldg. 13, Floor 2
Camden, N.J. o Section 598

RCA's new machine has not yet been announced and consequently no
literature on their programming techniques has been released. I
believe they are very interested in this type of work.

32) Raytheon i ’,i", s Dr. R Fo Glippinger
Waltham, Mass. ‘ L

' 'No reports available at present, not much work being done other than
a relative address modifying routine.

33) Remingtoh-Rand, Inc. Dr. Grace M..Hopper
162/ Locust Street ' ., Systems Engineer
Philadelphia 3, Pa., Eckert-Mauchly Division

Compiler technique deseribed in Chapter II. Excellent reports
available, . '

34) Remington-Rand, Inc. ~ Mr. J. Robert Logan
23rd and Allegheny" o Eckert-Mhuchly Division
Philadelphia, Pa.

Mr. Logan's algebraic approach is described invAppendix A. Excellent
report available. ' v ‘

35) Remington-Rand, Inc. Dr. G.,F. Cramer
507 18th St., South ' ERA Division
Arlington, Va.

ERA 1101, binary (24 bit word), serial, single address with an
address modifying operation using manual switches, 16,384 word storage
drum, binary point fixed at right end, paper tape 1nput, typewriter
and/or paper tape output. Have developed a subroutine library in
minimum access coding, which contains the usual function, and which
takes at most two or three (in a few cases) drum revolutions. To

use the library, the subroutine is written on the drum by the machine,
addresses modified according to specifications and ‘then punched

back out for manual assembly.

ERA 1103, binary (36 bit word), parallel, two address, same arithmetic
as 1101, 1024 words of electrostatic storage, 16,384 words of drum
storage, instructions may use either ES or drum, four magnetic tape
units provided, various options on input-output equipment. Work is
progressing on a pseudo-code which is a combination of instructions

to be interpreted and actual machine instructions. The actual machine
instructions used consist mainly in the logical operations. The
library of subroutines will be on a magnetic tape and the machine will
assemble and modify these routines along with the actual machine in-
structions into final running program on the drum. At the end of this
process, the program is transferred to ES and the routine begun. No
reports presently available.

36) Stanford Research Institute Mr. William H. Kautz
Stanford, California Research Engineer

Mr. Kautz has written a paper on the work done at Stanford Research
Institute entitled "Optimized Data Encoding for Digital Computers".
This paper will appear in the IRE Convention Record, Part 4, 1954
which is to be published in June.

37) Underwood Corporation Mr, Samuel Lubkin, Director
35-10 36th Avenue Electronics Computer Div,
Long Island City 6, N.Y. '

ELECOM. Are doing very little with automatic coding techniques and
have no published information.

38) United Aircraft Corp. Mr. Walter A. Ramshaw
East Hartford 8, Conn. Research Department

IBM 701. Mr. Ramshaw's group is mainly interested in the use of the
Speedcode I technique and many improvements are contemplated. It is
believed no reports: are presently available.

(kR
UNITED STATES GOVERNMENT

39) ~Hdgrs..USAF, Pentagon ‘ Mr. Joseph Natrella
Washington, D.C. - " AFAPA = 3b

UNIVAC (Air Force Conptroller's Office). Not much work has been
done due to the nature of the problems to be solved. These are pio=-
blems that must be solved over and over with different data and it

is felt that hand-tailored coding pays dividends. A former employes,
wrote an interesting paper on the application of the theory of sets
to compiling routine but no other work has besn attempted. Copies

of this paper are available. ,

40) Wright Air Development Ctr. Dr. Clarence Ross
Wright=-Patterson Air Force Base Aeronautical Research Lab.
Dayton, Ohio -

OARAC end awaiting an ERA 1103. Some work has been done on a library
of subroutines and its use of OARAC, however a large effort’'is con-
templated for the 1103.

41) US Army Ordnance Proving Ground Dr. Saul Gorn
Aberdeen, Md. Ballistics Research lab.

ORDVAC, EDVAC, ENIAC. Dr. Gorn has been working on a "Universal :
Code®™. This is discussed in some detail in Chapter III. No reports
publically available.

42) Army Map Service : Miss Nora Moser
Washington, D. C. ' - : \ :

UNIVAC. Improving and using a compiler very similiar to Dr. Hopper's
"A=2" but more adapted to Map Service problems. No report available
at present.

43) New York University Mr. Roy Goldfinger :
253 Greene Street Institute of Math. Science
New York 3, N.Y.

UNIVAC (Atomic Energy Commission). Mr. Goldfinger has developed a
version of a compiler which is particularly addptéd to the problems
met by his group. These problems are mostly of mathematical physics
equations. Mr. Goldfinger allows the programmer more flexibility
in arranging the location and size of storage assignments. He has
also developed several "service" routines for the compiler for
addition to the library, etc. Good write-up available. This com-
piler is used by virually all the programming staff at N.Y.U.
Excellent report available. ,

s48=

44) U. of California Radiation Lab. Mr., Thomas W. Wilder, III
P.0. Box 808
Livermore, California

UNIVAC (Atomic Energy Commission). Many problems encountered by

this group run for hundreds of hours and these are hand-tailored.

For smaller problems they use a three address technique (called

"3.D Codes") which has the ususl arithmetic, trigonometiic, expon-
ential and logaerithmic functions and the logical operations. This

is a compiling technlque«- Also havé dofie considerable work on:Editing
Generators. Reports soon available.

45) Bureau of Census - ‘ Mr, Don Hieser
WaShington ’ D.C. » .

UNIVAC. Due to specialized problems, almost no work has been done.
However, a rather specialized version of a compiler was tried on a
problem in which it was required to prepare 105 tables including
8300 households obtaining column and row totals, as well as certain
percentages and medians. Mr. Hieser stated that several hundred
hours of coding and debugging time were saved. He also indicated
that up to this time the main emphasis has been on obtaining as much
computer time as possible, now, however, the interest is changing

to autocoding. No published reports.

46) National Bureau of Standards Mr. Joseph H. Wegstein
Washington, D.C. or
Mr. Charles J. Swift
Bldg. 83, SEAC Lab.

SEAC. Presently in use is the so-called "Base OO" routine which
allows all the usual floating-point as. well as some. conversion
operations. Four address code,. essentially a ¢ompiler or assembly
technique. Work was started on "universal® code {called Basic Code I)
for natural science problems. Three alphanumeric addresses with

two additional addresses available for transfers. Project was sus=-
pended due to lack of a sponser and other higher priority work. Some
reports available.

47) David Taylor Model Basin Mrs. Betty Holberton
Washington 7, D.C. 3 ’

UNIVAC, This Navy group as yet is not using any form of automatic
coding. Mrs. Holberton is presently investigating the field to
determine the best approach for the particular problems they meet.

She is doing considerable work on "rerun" procedures, that is, methods
by which a problem may be restarted in the middle of a computation
should some machine failure occur which would void results from the.

~he

point of the fallure onward. She contemplates building two compilers,
one for mathematical problems, one for logistics problems. Has done
considerable work on edit generators in past.

48) US Naval Proving Ground Dr. E.K. Ritter, Director
Dahlgren, Va. Caomputation & Ballistics

Awaiting the NORC. No details of this machine being built by IBM

for the Navy, have been released as yet. However, it is a very high
speed (well over 10,000 operations per second), floating-point, 3=
address machine, and is equipped with extremely fast magnetic tape
units (upwards of 60,000 decimal characters per second). ,The compiler
being devised by Mr. Gene H. Gleissner and Mr. Karl Kozarsky of this
Department utilizes all the regular machine instructions (which are
floating-point operations) as well as a large subroutine library
which includes all the usual functions as well as regular and in-
verse interpolation and integration formulas. The library routines
are called by single instructions. . Symbolic addresses are allowed
and the instructions need not be ordered. A subroutine is not re-
compiled each time it is called for and at the end of the compilation
the problem solution begins immediately. No reports available at
present.

49) University of Cambridge | Mr. Eric N. Mutch
Free School Lane U. Mathematical Lab.
Cambridge, England

Contemplating development of a routine such as the Comprehensive
System of MIT. Has done considerable work on the library of sub-
routines idea. No reports available at present.

50) University of Illinois FEE : n: y;Gill
Urban, Tllinois = - 168 Engineering Research Lab.

TLLIAC, binary machine, sexadecimal arithmetic. Not too much work
has been done on automatic coding other than an extensive library of
subroutines including floating-point interpreters. "Everyday coding"
is based on a routine of Wheeler's very similar: to the Initial Orders
in "The Preparation of Programs" by Wilkes, Wheeler and Gill. This
routine takes decimal and relative addresses and simplifies the use

of the library by providing modification techniques. Some reports
available. : , o

51) University of Michigan Mr. Jemes H. Brown
Ypsilanti, Michigan ~ Willow Run Research Center

MIDAC, binary (45 bit word), serial, three address code;'512 word
acoustic storage, 6144 word drum storage with provision for three

45—

additional drums, input by high-speed paper tape to be supplemented
by magnetic tape equipment, output by typewriter to be supplemented
by scope and high-speed mechanical or photographic printer. This
group has developed an input conversion and computation system called
MAGIC somewhat similar to MIT Whirlwind I Comprehensive System.
Floating, relative and decimal.address are allowed on input program
as well as subroutines. Reports available.

52) University of Toronto Miss B.H. Worsley
Toronto, Canada Computation Center
McLennan Lab.

FERUT (Ferranti machine). It is understood that work 1s being done on
a decimal system input scheme. An extensive library of subroutines
has been built up for the use of the programming staff.

53) Wayne ﬁniversity Mr. Wesley C. Dixon
Detroit 1, Michigan . Computer Labe.

UDEC, single address, decimal machine, 10 digits per word, drum
storage, input by teletype equipment or photoelectric tape reader,
output by typewriter or paper tape. Machine is still in a stage of
development and consequently not much work has been done on auto=-
codes. Are using a routine to convert from floating or symbolic
address to fixed address. Some reports available.

In addition to this 1list, the following groups were written
with no reply received. This is most 11kely due to either addressing
the letter to the wrong person or else mailingAthe letter of inquiry
”1uded with each
‘the work being

too late to allow the group involved to reply
group is a statemént: regarding what 1is known ‘ab
undertaken or heard from other sources. '
1) Bell Aircraft Corp.

Post Office Box 1
Fort Worth, Texas

Nothing known about this group.

2) Bendix Aviation Corp.
Hawthorne, California

Nothing known about this group.

—lfm.

3) Carnegie Institute of Technology
PittSburgh, Pa.

Nothing known about this group.

4) General Motors
Detroit, Michigan

Getting an IBM 701. Nothing else known.

5) Grumman Aircraft Corp.
Bethpage
Long Island, N.Y.

Nothing known ebout this group.

6) Lockheed Aircraft Corp.
 Burbank, California

IBM 701, second 701 on order. This group has developed a floating=-
point technique called FLOP which is believed to be similar to the
other 701 techniques. Also has developéd a technique which allows
matrix operations to be performed directly which is floating-point.

7) Los Alamos Scientific Lab. (AEG)
Los Alamos, New Mexico

IBM 701, Has developed two interpretive systems, a single address
technique called DUAL and a three-address method called SHACO. It

is understood these are similar to other 701 techniques. Regional
addressing and assembly programs have been developed and considerable
work is being done on "post-mortem" and other mistake analysis
routines.

8) North American Aircraft, Inc.
Los Angeles International Airport
Los Angeles 45, California

IBM 701. Has developed a single address assembly program with the
usual addressing features.

To make the list somewhat more complete, the following pos-
sibilities are submitted. for additional. information. These were dis-

covered too late to permit-correspondence.

Consolidated Vultee Aircraft Corporation
Fort Worth Division
Fort Worth, Texas

dT-

Nationaleecurity Agency Mbs;'boroﬁhy‘T.'Blum

Washington, D.C. Technical Consultant
US NOTS, Math. Division Mr. Harley E. Tillitt, Head

China Lake, California Computing Branch

